На главную


Задачу решают электроны

Не помогут ли электроны увидеть невидимое? На первый взгляд электроны здесь бесполезны. Ведь мы представляем их себе в виде мельчайших частичек. Разве могут частички соперничать со световым лучом и даже заменять его? А почему бы и нет?
Если сыпать из сита муку на руку, то на столе образуется «тень» руки — место, куда мука не насыпалась (рис. 74). Художники иногда вместо кисти пользуются пульверизатором. Выдувая краску из пульверизатора мелкой пылью и прикладывая к окрашиваемой поверхности заранее заготовленные шаблоны — трафареты, они быстро получают нужный узор.

Там, где в трафарете вырезаны отверстия, распыленная краска ложится на раскрашиваемый предмет, где отверстий нет, остается «тень» — незакрашенное место.
Распыленной краской можно рисовать не хуже, чем кистью.
Наука пока еще имеет весьма смутные представления о размерах электрона. Известно лишь только то, что они очень малы. Их поперечник по всей вероятности определяется миллионными долями миллимикрона. Не миллиметра, а именно миллимикрона! Это значит, что вирус табачной мозаики во много миллионов раз крупнее электрона!
Если мысленно увеличить электрон до размеров маленькой дробинки, то вирус табачной мозаики придется представить себе в виде огромной горы.
Дробинка, выпущенная из ружья, не может облететь гору стороной, подобно птице. Так и электроны, вылетевшие из электронной пушки, не смогут обогнуть «гору» — вирус. Электроны могут пронизать его насквозь в миллионе мест и долететь к экрану. Но не все электроны беспрепятственно пролетят сквозь вирус. Для электронов вещество почти не прозрачно и только сквозь тончайшие слои могут пролетать быстрые электроны.
Некоторые из электронов, пролетая близко от атомов (а вирусы, как и все тела в природе, состоят из атомов), будут отклонены электромагнитными полями атомов и изменят свой путь.
Там, где у вируса имеется какое-либо утолщение или уплотнение, электроны встретят больше атомов и многие из них. отлетят в стороны, то есть рассеются, не достигнув экрана.
В тех местах, где вирус тоньше, где атомов меньше, электроны пройдут более свободно. И на экране получится тень вируса — более темная там, где вещество уплотнено, и более светлая, где вещество тонко.
Однако пытаться разглядеть электронную тень вируса — дело совершенно бессмысленное. Тень вируса будет почти столь же мала и так же невидима, как и сам вирус,— портрет этого врага человек», сделанный в натуральную величину, бесполезен.
Получить сильно увеличенные изображения вирусов и других мельчайших телец можно только в том случае, если найдется способ подчинить электронный луч законам оптики, то есть заставить его преломляться и фокусироваться — давать увеличенное изображение предмета.
Само собой разумеется, что применить для этой цели стеклянные линзы не удастся. Не только стекло, но даже воздух почти непроницаем для электронного луча. Налетая на атомы и молекулы газов или других веществ, электроны отскакивают от них, почти как мячи, и рассеиваются в окружающем пространстве.
Следовательно, электронный микроскоп должен быть безвоздушным. Условия нелегкие,— только в сказках бывают такие загадки. Но все же эту трудность удалось преодолеть. Воздух из корпуса микроскопа откачали, а линзами послужили электрические или магнитные поля.
Магнитным полем можно заставить электрон лететь по спирали, проделывать сложные сальто и петли.
Поэтому магнитные поля, создаваемые катушками определенной формы, оказались прекрасными линзами для электронного луча (рис. 75).

Теоретические расчеты показывали, что электронный микроскоп при достаточном его усовершенствовании способен дать полезное увеличение не в тысячу раз, как оптический микроскоп, а в миллионы раз. Он должен позволить четко различать частицы размером в сотые доли миллимикрона. Электронный микроскоп может снять «шапку-невидимку» с вирусов, со всего необъятного мира ничтожно-малых телец и даже с молекул.

Советский электронный микроскоп

В начале 1940 года академик А. А. Лебедев вместе со своими сотрудниками В. Н. Верцнером и Н. Г. Зандиным начал проектировать и строить первый советский электронный микроскоп.
В обычном световом микроскопе в его нижней части помещается источник света или зеркальце, отражающее лучи какого-либо источника света. Его лучи проходят сквозь стеклянную линзу, которая называется конденсориой или собирательной. Она собирает световые лучи в конический пучок и направляет их на стеклянную пластинку, на которой лежит исследуемый предмет.
Световые лучи, прошедшие сквозь этот предмет, попадают в первую увеличительную линзу микроскопа, которая называется объективной линзой, так как обращена к объекту исследования.
Объективная линза увеличивает изображение предмета примерно в 50 раз.
Это увеличенное изображение исследователь рассматривает сквозь окулярную линзу, тоже дающую увеличение в 10 — 20 раз.
В результате общее увеличение обеих линз — объективной и окулярной — получается равным произведению этих чисел, то есть от 500 до 1000 раз.
В электронном микроскопе вместо источника света имеется электронная пушка. Она посылает пучок электронных лучей, который попадает в первую — конденсорную линзу микроскопа.
Разумеется, эта линза не стеклянная, стекло было бы тут только помехой, и ее форма ничем не напоминает увеличительное стекло. Это всего лишь электромагнитная катушка с отверстием по оси. Сквозь это отверстие проходит электронный луч. Внутри катушки нет ни стекол, ни воздуха, так как из электронного микроскопа выкачан почти весь воздух. Но называется такая катушка — линзой, потому что ее действие на электронный луч подобно действию стеклянной линзы на световой луч (рис. 76).

Световые лучи, выходящие из одной точки, пройдя сквозь двояковыпуклую линзу, преломляются в стекле, отклоняются от прежнего направления и собираются коническим пучком на объекте.
Точно также и электроны, пролетев сквозь отверстие катушки-линзы, фокусируются — сходятся конусом и попадают на предметный «столик», создавая на нем яркое «электронное освещение». В центре «столика» вырезано круглое отверстие. Поверх этого отверстия натягивают тончайшую (толщиной 0,1 — 0,2 микрона) прозрачную пленку коллодия, на которой помещают то, что хотят исследовать.
Объектом исследования могут служить колонии вирусов или бактерий, частицы какого-либо вещества, мельчайшие кристаллы и т. п.
Электроны, летящие со скоростью в несколько тысяч километров в секунду, пронизывают предметы, лежащие на пленке.
В тех местах, где вещество более плотно или имеется какое-либо утолщение, электроны встречают больше препятствий и, рассеиваясь, несут большие потери в своих рядах. Места менее плотные электроны преодолевают с меньшим отсевом: электронный поток получается здесь плотнее, гуще.
Чтобы изображение предметов получилось увеличенным, электронный пучок по пути от предметного столика до экрана проходит сквозь две магнитные линзы.
Сразу же за предметным столиком электронный поток перехватывает объективная катушка-линза.
Она собирает электроны, выходящие из каждой точки предмета, и таким образом дает промежуточное, сильно увеличенное изображение.
Следующая линза, которая в оптическом микроскопе называется окулярной, потому что посылает лучи в глаз наблюдателя (по-латински окулюс — глаз), в электронном микроскопе получила название проекционной, потому что она отбрасывает изображение на светящийся под ударами электронов экран.
Проекционная линза еще больше увеличивает изображение.
Экран электронного микроскопа будет светиться не везде одинаково. Где электронов упадет побольше, там и свечение будет поярче, а где электронный поток потерял значительную часть электронов, экран будет светиться слабее. На экране вырисуется изображение предмета.
Кроме линз на пути электронного пучка стоят еще диафрагмы — металлические пластинки с отверстиями, ограничивающими ширину пучка. Электроны, которые в результате встреч с атомами рассматриваемого предмета слишком сильно отклонились в сторону, натыкаются на диафрагмы и не проходят сквозь их отверстия. Диафрагмы служат возле линз как бы привратниками: они пропускают вперед только ту часть пучка электронных лучей, которая несет к экрану правильное, неискаженное изображение.
Кроме того, в электронном микроскопе имеется несколько вспомогательных механизмов — два насоса, которые откачивают воздух из внутренней полости прибора, электрооборудование, которое подает высокое напряжение, фотокамера для фотографирования изображений, приборы управления.
Первый образец советского электронного микроскопа был готов в середине 1940 года и давал увеличение в десять тысяч раз, то есть вдесятеро больше своего оптического собрата.
Ободренные первым успехом, ученые стали строить вторую модель, которая должна была дать увеличение в 25 тысяч раз!

Увеличение в сто тысяч раз

Создателям первого советского электронного микроскопа академику А. А. Лебедеву, В. Н. Верцнеру и Н. Г. Зандину была присуждена Сталинская премия.
В модели 1947 года, законченной к тридцатилетию Советской власти, изобретатели применили много новых усовершенствований.
Так как электронный микроскоп увеличивает изображение в 25 тысяч раз, а фотографию можно увеличить еще в 4 раза — общее увеличение достигло 100 000 раз!
И это далеко не предел. Электронный микроскоп еще далек от совершенства и пока только «учится» смотреть.

Но учится он быстро, быстрей своего предшественника. За 300 лет оптический микроскоп достиг наибольшего полезного увеличения в тысячу раз. Электронный микроскоп уже дал увеличение в 100 000 раз.
Когда электронный микроскоп приобретет полную меру своей зоркости, он поможет науке еще глубже проникнуть в мир ничтожно-малых существ и даже молекул.
Уже самые первые наблюдения, сделанные е помощью электронного микроскопа, раскрыли загадки, перед которыми наука стояла до сих пор как бы с завязанными глазами.
До изобретения электронного микроскопа врачи не знали, почему человек, заболевший туберкулезом, несмотря на самое энергичное лечение, иногда буквально сгорает в несколько недель; в других же случаях он сравнительно быстро поправляется. Иногда туберкулезные палочки оказываются невероятно живучими и зловредными, а иногда настолько слабыми, что гибнут сами собой.
Электронный микроскоп раскрыл секрет этого злейшего врага человека. Оказалось, что туберкулезные бациллы способны надевать на себя панцырь — плотную жировосковую оболочку, которая оберегает их от действия лекарств и защитных сил организма. Тайна панцыря этого маленького чудовища теперь раскрыта, и медицина нашла способ борьбы с опаснейшей болезнью человека.
С помощью электронного микроскопа удалось увидеть бактериофагов. Эти таинственные друзья-невидимки оказались маленькими шариками с длинными хвостиками. Длина хвостика бактериофаг» равна примерно 100 или 120 миллимикронам, а его круглое тельце раза в 2 — 3 меньше хвостика. Поперек самой тонкой, паутинной, нити уляжется 30 телец бактериофагов.
«Почуяв» присутствие дизентерийной бактерии, бактериофаги устремляются к ней со всех сторон и облепляют ее, как муравьи гусеницу, забравшуюся в муравейник. Присосавшиеся бактериофаги вызывают быстрый распад болезнетворной бактерии (рис. 78).

К сожалению, в безвоздушном пространстве электронного микроскопа под воздействием электронного луча гибнет все живое. Поэтому на снимке видны не живые бактериофаги, а мертвые.
Они погибли вместе с дизентерийным микробом в тот момент, когда шли на него в атаку.
Возможно, что ученым удастся преодолеть этот недостаток электронного микроскопа, и тогда можно будет понаблюдать, как движутся бактериофаги и как они нападают и уничтожают микробов.
Особенно поразительные результаты дали наблюдения вирусов. Рисунок 79 изображает вирусы гриппа — оказывается, они имеют вид шариков. Об их размерах позволяет судить масштаб,— на рисунке нарисована черная линия, длина которой соответствует одной десятитысячной доле сантиметра — микрону.

Некоторые вирусы, выделенные из зараженных тканей, кристаллизуются почти так же, как кристаллизуются соль, сахар или квасцы. В кристаллическом виде это полупрозрачное белковое вещество. Его можно несколько раз подряд растворять в воде и снова кристаллизировать. Никаких признаков жизни оно не подает.
Попадая в живые ткани растений, это вещество заражает его. Кристаллы вируса начинают увеличиваться в числе, проявляя тем самым способность размножаться.
Белковые вещества, из которых состоят вирусы,— это особая форма организованной материи, которая, как предполагают биологи, стоит на грани живой и мертвой природы.
В течение многих веков в науке господствовало убеждение, внушенное религией, будто бы жизнь, все живое, способное питаться, дышать, расти и размножаться, есть творение божественных сил и что оно резко отличается от неживого, неспособного питаться, расти и размножаться.
Идеалистическая философия учила, что между живой и мертвой природой лежит непреодолимая пропасть, разграничивающая эти два противоположных мира. Никакого звена, связывающего живое с неживым, она не допускала.
Против порочного идеалистического мировоззрения, увлекавшего науку на ложный путь, страстно боролся Владимир Ильич Ленин. Еще в 1908 году он писал: «Все грани в природе условны, относительны, подвижны, выражают приближение нашего ума к познанию материи.» (В. И. Ленин, Соч., т. 14, стр 268.)
Электроника заставила воочию убедиться в справедливости гениального предвидения В. И. Ленина. Она подвела исследователей к грани между живой и неживой природой, и никакой пропасти там не оказалось. Грань между живым и неживым действительно условна, относительна, подвижна.
Изучение нуклеопротеидов, возможно, позволит ученым разгадать еще одну тайну природы — создать своими руками молекулы живого белка, способного питаться, дышать, расти и размножаться.
И это будет величайшим открытием, грандиозной победой человеческого ума, равной которой не было за всю историю науки.


предыдущая страница оглавление следующая страница