На главную


В мире радиоволн

Мы окружены сигналами всех радиостанций мира. Радиоволны самых различных частот пронизывают стены наших домов, проникают в нас самих, оставаясь совершенно незамеченными. Человек в мире радиоволн, как слепой в светлой комнате. Наши органы чувств не в состоянии их воспринимать. Даже стоя под мачтами радиовещательной станции, нельзя услышать музыку или речь, которую в этот момент передают по радио.
Чтобы воспринимать сигналы радиостанции, нам прежде всего нужна специальная сеть, которая улавливала бы радиоизлучение, нужно «ухо», способное «слышать» эти сигналы.
Таким электрическим «ухом» служит антенна радиоприемника. Она улавливает электромагнитные колебания, излучаемые радиостанциями.
Но если бы радиослушатель вздумал слушать все, что восприняла его антенна, то он, пожалуй, ничего не услышал бы, кроме сплошного рева. Ведь антенна принимает излучение всех радиостанций мира, а слушать всех сразу — невозможно!
Для отсева ненужных колебаний служит колебательный контур, который обладает «своей», строго определенной частотой колебаний. Изменяя самоиндукцию катушки или емкость конденсатора, можно управлять по своему желанию частотой колебаний контура, то есть настраивать его на избранную частоту и принимать сигналы только той радиостанции, какую намечено слушать.
Колебательный контур, словно сито, просеивает «улов» антенны,— в нем появляются только те колебания, на которые он настроен, все остальные беспрепятственно уходят по проводу заземления (рис. 59).

Но и эти колебания, которые отобрал для нас контур, «непонятны» для нашего уха, оно не в состоянии воспринимать электрические сигналы, и чтобы их услышать нужен «переводчик».
Обязанности электрического переводчика исполняет детектор, что значит «обнаруживатель». Так был назван при первых опытах А. С. Попова прибор, служивший для обнаруживания сигналов передатчика. Со временем детектор изменял и свое устройство и назначение. Название «детектор» сохранилось, но приобрело новый смысл. Детектировать — значит преобразовывать модулированный переменный ток высокой частоты в ток низких звуковых частот.
Простейший детектор состоит из так называемого «детектирующего» кристалла, чаще всего минерала галена (сернистый свинец), и стальной спиральки, касающейся своим острием одной из граней кристалла.

Кристалл в паре с металлическим острием работает, как дверца мышеловки или как клапан насоса. В одну сторону — проход электронам свободен, назад — им дороги нет.
Электроны, проскочившие с острия в грань кристалла, обратно уже не возвращаются. Им остается только одно — идти к телефону.
Без детектора в цепи телефона шел бы переменный ток высокой частоты, с детектором характер тока меняется, детектор словно разрубает колебания: ток проходит только в одном направлении в виде отдельных толчков. Эти толчки образуют так называемый пульсирующий ток (рис. 61).

В цепь детектора включен телефон. Телефон преобразует недоступные непосредственно нашему восприятию колебания силы тока в звуки.
Однако телефон сам по себе с такой задачей справиться не может. Он способен превращать в звуки человеческой речи или в музыку только колебания низкой звуковой частоты, ограниченные пределами от 16 до 20 тысяч колебаний в секунду, которые получаются после детектирования высокой частоты.
Обмотка магнита в телефоне, благодаря самоиндукции, обладает огромным сопротивлением для тока с частотой в сотни тысяч периодов в секунду. Да и мембрана телефона слишком массивна, чтобы колебаться с такой частотой. И, наконец, если бы даже телефон мог воспроизвести такие колебания, мы бы их не услышали. Мы слышим звук только тогда, когда нашего уха достигают звуковые воздушные волны с частотой от 16 колебаний в секунду до 20 000 колебаний в секунду.
Но при наличии детектора ток, хоть и толчками, идет все же в одну сторону, и мембрана телефона может теперь отклоняться под его воздействием. Она прогибается то сильнее, то слабее, соответственно средней силе тока (средней силе толчков). А так как сила толчков меняется со звуковой частотой, именно так, как был модулирован ток в радиопередатчике, то телефон воспроизводит такие же колебания, которые воздействовали на микрофон передатчика. Из телефона несутся звуки речи или музыки.
Для сглаживания толчков, происходящих с высокой частотой, иногда параллельно телефону включают конденсатор небольшой емкости.
Конденсатор накапливает электрические заряды, когда сила тока в цени нарастает, и освобождает их, когда сила тока падает. Это его основное назначение.
Ток через детектор проходит короткими отрывистыми толчками,— электроны проскакивают стайками. Когда в проводнике возникает электрический толчок, часть электронов попадает в конденсатор,— сила толчка ослабевает. Когда наступает промежуток между толчками, конденсатор освобождает электроны и их током заполняется промежуток между толчками. Толчки тока выравниваются. Ток, благодаря конденсатору, из пульсирующего становится волнистым, он плавно нарастает и также плавно спадает со звуковой частотой (с частотой модуляции). Телефон с конденсатором звучит лучше, чем без него.

Электронная лампа

Кристаллический детектор, обслуживавший первые радиоприемники, обеспечивал очень чистое звучание телефона, но отличался крайней неустойчивостью. Он работает только в том случае, когда острие спиральки попадает на детектирующую точку кристалла. При малейшем толчке пружинка вздрагивала, острие соскакивало с чувствительной точки, слышимость пропадала. Поиски новой «точки» требовали некоторого времени, прием радиопередачи с таким детектором был ненадежен.
Неустойчивая работа кристаллического детектора заставила искать ему заместителя.
В настоящее время кристаллический детектор применяется только в простейших любительских приемниках и в некоторых установках специального назначения.
Основные части прибора, заменившего кристаллический детектор, существовали порознь задолго до изобретения радио. Это — катодная трубка и осветительная электролампочка.
Одна комбинация катодной трубки и осветительной лампочки уже была осуществлена и служила человечеству в качестве рентгеновского аппарата.
Вторая комбинация тех же частей вылилась в современную электронную лампу.
Простейшая электронная лампа состоит из стеклянного баллона, в который впаяны два электрода — катод и анод. Такая лампа с двумя электродами называется диодом. Слово диод означает «два входа».
Катодом в электронной лампе служит раскаленная вольфрамовая нить; анодом — металлическая пластинка.
Анод изготовляют из молибденовой жести, из никеля, из тантала или из меди.
Задача катода — испускать при накале как можно больше электронов, поэтому вольфрамовые нити на радиоламповом заводе обрабатывают так, чтобы облегчить электронам выход из нити. Для этой цели нити покрывают веществами, которые легко освобождают электроны. Такой катод, даже при невысокой температуре, испускает небольшое количество электронов.
Нить катода накаливают током от маленькой батареи. С повышением температуры число вылетающих из нити электронов возрастает.
Если не прикладывать к аноду положительного напряжения, то электроны будут роиться вокруг катода легким облачком и вновь возвращаться в катод. Но как только на аноде появится положительное напряжение, электроны устремятся к аноду.
Отличие электронной лампы от рентгеновской трубки состоит в том, что в электронной лампе применяют напряжения гораздо более низкие, чем в рентгеновской трубке.
Так как напряжение на электродах электронной лампы сравнительно невелико, то электроны совершают перелет с катода на анод не столь стремительно, как в рентгеновской трубке. Они «приземляются» на аноде довольно спокойно, и рентгеновские лучи поэтому не возникают.
Совершенно очевидно, что ток в электронной лампе может проходить лишь в одном направлении — от катода к аноду и ни в коем случае не наоборот, так как электроны могут слетать только с катода (рис. 62).

Если переменить знаки напряжения на электродах: к аноду присоединить минус батареи, а к катоду — плюс, ток через лампу не пойдет, так как холодный анод электронов не испускает. Следовательно, электронная лампа-диод может исполнять роль электронного клапана, то есть служить детектором. Диод справляется с обязанностями детектора гораздо лучше кристалла с пружинкой. Он работает устойчиво, без капризов и перебоев.
Кроме того, диод применяют в качестве выпрямителя переменного тока малой мощности. Диод, предназначенный для выпрямления переменного тока, называется кенотроном.
Через год после изобретения диода, электронная лампа была так усовершенствована, что стала одним из могущественных электронных приборов.

Сетка — третий электрод

Коренное усовершенствование электронной лампы состояло в том, что в ней был устроен специальный регулировщик — третий электрод. Электронам, свободно пролетавшим через диод от катода к аноду, пришлось теперь подчиняться командам регулировщика и направляться к аноду только по его разрешению.
Этот третий электрод делают различного вида и формы: иногда это легкая проволочная решетка или сеточка, иногда — спираль, навитая вокруг проволочки катода на некотором от нее расстоянии. Но, независимо от формы, третий электрод всегда называется сеткой.
Сетка располагается между анодом и катодом, и для нее в цоколе лампы сделан отдельный вывод. Следовательно, лампа, снабженная сеткой, имеет не два входа, как диод, а три. Такие лампы называются триодами (рис. 63).

Сама по себе сетка препятствием для электронов служить не может. Проволочки, из которых она изготовлена, тонки, а ячейки ее просторны. Электроны могут пролетать сквозь сетку почти без всяких помех и задержек, но только до тех пор, пока на сетку не подано отрицательное напряжение.
Тогда отрицательно заряженные проволочки сетки будут отталкивать электроны назад к катоду и противодействовать их движению к аноду. Ток ослабеет и может совсем прекратиться — лампа будет «заперта».
Если триод нрисоединяют к колебательному контуру приемника, лампа становится общим звеном для трех самостоятельных электрических цепей.
Одну цепь составляют нить накала катода и небольшая батарейка, которая ее подогревает. В этой цепи электроны бегут от минуса батареи по нити и уходят к плюсу батареи. Роль этой цепи довольно ограничена — поддерживать накал нити.
Вторая цепь составлена мощной анодной батареей, которая своим плюсом присоединена к аноду лампы, а минусом — к катоду. Эта батарея создает сильное электрическое поле между анодом и катодом лампы. Под воздействием электрического поля электроны, клубящиеся вокруг накаленного катода, проскальзывают сквозь сетку, когда она заряжена положительно, и «приземляются» на аноде.
-Третья цепь образована колебательным контуром, который одним проводником присоединен к катоду, а другим — к сетке. В этой цепи действуют высокочастотные колебания контура, они создают небольшое переменное напряжение между катодом и сеткой и меняют интенсивность потока электронов, движущихся от катода к аноду.
Воздействие цепи сетки на силу тока в анодной цепи является основой работы электронной лампы.
Сетка расположена очень близко к катоду, и поэтому она оказывается полным хозяином того облачка электронов, которые вьются возле катода. Каждое колебание напряжения на сетке заставляет облачко изменяться.
Отрицательное напряжение увеличивается — электронное облачко съеживается, прижимается к катоду, электроны, едва вылетев из нити, вынуждены тотчас возвращаться обратно: их отгоняет отрицательное напряжение сетки (рис. 64).

Когда отрицательное напряжение уменьшается, облачко разрастается.
Если же отрицательное напряжение упадет ниже определенного предела, электроны начнут прорываться сквозь сетку и лететь к аноду.
При дальнейшем ослаблении отрицательного напряжения, когда оно совсем сойдет на нет, или даже сменится положительным напряжением, электроны, ничем не сдерживаемые, ринутся сквозь сетку к аноду, и через лампу в этом случае пойдет сильный анодный ток.
Итак, сетка, в зависимости от величины и знака ее заряда, или усиливает, или уменьшает, или вовсе парализует влияние электрического поля, создаваемого анодом. Она, как водопроводный кран, может пропускать электроны и широким свободным потоком и тонкой струйкой; она может позволить им сочиться как бы по каплям или полностью прекратить их движение к аноду,— «запереть» лампу.
Сетка — в высшей степени тонкий и точный регулятор анодного тока, текущего через лампу от катода к аноду.
Напряжение на сетку подает колебательный контур. Электроны, раскачавшиеся в катушке, соединенной с конденсатором, то накапливаются на сетке, то покидают ее. Величина заряда на сетке меняется вместе с колебаниями в контуре. Электроны, вылетевшие из катода, то стремительно летят к аноду, то жмутся к нити катода, отброшенные отрицательным зарядом сетки.
Величина заряда сетки, доставляемого колебательным контуром,— незначительна. Она и не должна быть большой. Благодаря близости к катоду сетка властно управляет потоком миллиардов электронов. Ничтожнейшие изменения, легкие колебания напряжения на сетке тотчас сказываются на силе анодного тока. Сетка пропускает электроны в строгом соответствии с колебаниями, возникшими в контуре.
Поэтому колебания анодного тока, текущего через лампу от батареи, копируют модуляцию колебаний, поступающих на сетку от контура, одновременно и выпрямляя и усиливая ток.
Триод, сетка которого соединена с контуром, доставляет в телефон уже не слабенький ток, уловленный антенной и контуром, а сильный анодный ток, способный привести в действие несколько телефонов или даже громкоговоритель. Триод совмещает в приемнике две обязанности — и детектора и усилителя.
Однако этим не исчерпываются возможности лампы.


предыдущая страница оглавление следующая страница