На главную


ГЛАВА ШЕСТАЯ

САМЫЙ БЫСТРЫЙ ВЕСТНИК

Упрямство швейной иголки

В 1826 году физик Феликс Савар делал опыты с намагничиванием стальных швейных иголок при электрических разрядах. Но иголки почему-то вели себя странно, проявляя непонятное непостоянство.
Предшественники Савара много раз производили подобные опыты. Но, намагничивая иголки, эти ученые не интересовались, где у иголок получается северный полюс, а где — южный. Намагнитились, и ладно! Савар же хотел найти способ намагничивать иглы так, чтобы их концы принимали заранее заданную полярность.
Савар намотал на картонную трубку несколько десятков витков медной проволоки, приготовил большую лейденскую банку и запасся иголками. Одну иголку он положил внутрь катушки, запомнив, что острие иголки высовывается с левой стороны.
Затем ученый зарядил от своей электрической машины лейденскую банку и записал: «Внешняя обкладка лейденской банки приобрела положительный заряд, а внутренняя — отрицательный».
Протягивая проводники от катушки к лейденской банке, Савар также отметил в своем журнале, что провод от левого конца катушки (из которого выглядывало острие иголки) будет присоединен к обкладке с положительным зарядом.
«Теперь,— рассуждал Савар,—- когда лейденская банка разрядится через катушку, я буду знать, как сказалось расположение зарядов в лейденской банке на расположении полюсов намагнитившейся иголки».
Закончив все приготовления, он поднес провода к лейденской банке. Сверкнула искра. Лейденская банка разрядилась. Иголка намагнитилась: острый конец стал северным полюсом, ушко — южным.
«Следовательно,— сделал вывод Савар,— положительный заряд создает северный полюс магнита, а отрицательный — южный. Но для проверки опыт надо повторить».
Савар проделал все в прежнем порядке: внешней обкладке лейденской банки сообщил положительный заряд, а иголку вложил в катушку так, чтобы ее острие торчало слева, и присоединил провода к лейденской банке. Сверкнула искра, иголка намагнитилась, но теперь острие стало южным полюсом, а ушко — северным.
Физик заподозрил какую-то ошибку и начал опыт с третьей иголкой. Он снова сделал все в точности так, как и в первый раз, присоединил провода к лейденской банке, и. . . острие стало северным полюсом.
Ученый повторял опыт множество раз. Условия опыта были одинаковы, а результат менялся совершенно беспорядочно.
Савар менял заряды на обкладках лейденской банки, менял местами концы проводников, вкладывал иголки справа и слева, заменял иголки кусочками стальной проволоки, словом, испробовал все, но иголки намагничивались, как им «хотелось», и научный опыт превращался в нелепую игру. Только замена лейденской банки батареей делала иголки совершенно послушными.
К опыту с упрямой иголкой Савар возвращался несколько раз. Он старался разгадать, почему иголки под действием электрического разряда лейденской банки намагничиваются то так, то иначе, а под действием тока от батареи разнобоя не получается. Пропуская по катушке ток от батареи, всегда можно наперед сказать, как намагнитится любой конец иглы. Значит, разряд лейденской банки чем-то отличается от разряда батареи, но чем — тогда было неизвестно.
Разгадка странного явления была найдена много лет спустя, лишь во второй половине XIX столетия.

Особенности колебательного разряда

В любом современном радиоприемнике можно найти проволочную катушку, соединенную с конденсатором, то есть тот самый прибор, с помощью которого Савар намагничивал иголки разрядом лейденской банки. Оказывается, что пользуясь приемником, мы слышим радиопередачу в силу той самой причины, какая мешала Савару выполнить задуманное им исследование.
Электрические явления, совершающиеся в катушке, которая присоединена к конденсатору, весьма своеобразны.
Отрицательно заряженная обкладка конденсатора представляет собой как бы вокзальный зал ожидания, в котором толпятся вечные странники — электроны, ожидающие, когда им разрешат отправиться в путь.
Положительный заряд противоположной пластины конденсатора притягивает к себе электроны, но попасть туда они не могут — мешает перегородка - диэлектрик, и они скучиваются у ее поверхности.
Но вот к обкладкам конденсатора присоединили концы проводников от проволочной катушки. Для электронов образовался проход в другую обкладку. В проводе, который намотан на катушку, возникло электрическое поле. Оно привело в движение все электроны, находившиеся в катушке. Они сорвались с места и устремились в катушку.
И вот тут-то происходит нечто неожиданное, пробег по виткам катушки для электронов оказывается далеко не таким простым делом, как этого можно было ожидать.
В тот момент, когда конденсатор начинает разряжаться, электрический ток в катушке возникает не сразу, не мгновенно. Ему мешает самоиндукция. Току приходится преодолевать ее сопротивление, и он нарастает постепенно, словно берет разбег.
Достигнув наибольшей силы, ток начинает ослабевать. «Передовые отряды» электронов добрались до противоположной обкладки конденсатора, заряды обеих пластин выравнялись и, казалось бы, на этом разряд должен оборваться. Но нет! Тут опять вмешивается самоиндукция. Магнитное поле катушки вместе с током достигает наибольшей напряженности, и оно не может исчезнуть внезапно и бесследно.
Ослабевая вместе с током, магнитное поле создает вдоль проволоки электрическое поле, которое продолжает гнать электроны в уже зарядившуюся обкладку. Ток, постепенно возраставший, и ослабевает тоже постепенно, заставляя электроны в избытке скапливаться на той обкладке, которая раньше была заряжена положительно.
Конденсатор не просто разряжается, а перезаряжается. Положительно заряженная обкладка становится отрицательной, отрицательно заряженная — положительной; в конденсаторе вновь образуется электрическое поле обратного направления.
Разряд утихает, но только на одно мгновение. Электроны, увлекаемые электрическим полем уже в обратном направлении, опять устремляются через катушку в положительно заряженную обкладку, и все происходит в прежнем порядке. Самоиндукция сначала тормозит бег электронов, потом ускоряет его и загоняет их в другую обкладку. Обкладки снова меняются знаками, а затем все начинается сначала. Электроны носятся взад и вперед, от одной обкладку Конденсатора до другой, как на качелях (рис. 52).

Катушка, присоединенная к конденсатору, поддерживающая своим магнитным полем это колебательное движение, получила название катушки самоиндукции.

Контур — электрический маятник

Теперь должно быть понятно, почему Савару не удавалось намагничивать иголки так, как он рассчитывал. Электроны, пробегая в одном направлении, намагничивали иголку, а пробегая обратно — перемагничивали ее. Угадать, в каком направлении они пробегут в последний раз, перед разрывом цепи в искровом промежутка, невозможно.
Разряд конденсатора не создает тока, текущего в одном направлении от гальванической батареи. В этом случае возникает колебательный разряд, в котором электроды быстро меняют направление своего движения, то есть образуют не постоянный, а переменный ток, который постепенно угасает, вследствие сопротивления проводника.
Прибор, состоящий; из конденсатора и катушки самоиндукции, называется колебательным контуром (рис. 53).

Колебательный контур представляет собой не что иное, как электрический маятник. Каждый маятник совершает оределенное число качаний в секунду. Частота качаний маятника зависит от его длины. Чем короче маятник, тем быстрее он качается.
Электрические колебания в контуре тоже совершаются со своей определенной частотой, которая зависит от величины самоиндукции катушки и емкости конденсатора, составляющих колебательный контур. Чем меньше самоиндукция катушки и чем меньше емкость конденсатора, тем быстрее протекает его перезарядка и тем больше частота колебаний тока в катушке.
Значит, для возбуждения очень быстрых, вернее, частых электрических колебаний следует иметь маленький конденсатор и небольшую катушку из 1 — 2 витков проволоки.
На заре радиотехники, когда в приемных и передающих радиостанциях использовались сравнительно медленные (редкие) колебания, приходилось применять огромные катушки и «пудовые» конденсаторы. Такие «первобытные» приемники весили по 16 — 20 килограммов.
Изменяя длину маятника, можно изменить частоту (период) его качаний; в этом нетрудно убедиться — стоит удлинить маятник часов - ходиков, он начнет качаться реже, а часы будут отставать.
Точно так же, изменяя самоиндукцию катушки или емкость конденсатора, можно по желанию увеличивать и уменьшать частоту колебаний в контуре, то есть настраивать его на ту частоту, какая нужна.
Чтобы привести маятник в движение, не требуется большого усилия, достаточно толкнуть его, и он начнет качаться. Но заставить маятник совершать вынужденные колебания, то есть раскачиваться чаще или реже, чем ему свойственно, весьма трудно. В этом случае приходится раскачивать его, не выпуская из рук.
И электрический маятник тоже легко воспринимает колебания, происходящие с его собственной частотой, но остается почти нечувствителен ко всем остальным колебаниям.
Колебания обычного маятника, если его не подталкивать, постепенно затихают, потому что энергия, полученная от толчка, расходуется на преодоление сопротивления воздуха и на трение в точке подвеса.
И в электрическом маятнике колебания затухают, потому что электронам приходится преодолевать сопротивление проводника. Но, кроме того, в колебательном контуре есть еще одна важная статья расхода энергии: излучение — создание в окружающем пространстве меняющихся электрического и магнитного полей — так называемых электромагнитных волн, бегущих от колебательного контура во все стороны и уносящих энергию его колебаний.
Сопротивление проводников и потери энергии на излучение приводят к тому, что электрические колебания в контуре быстро прекращаются.
Именно за счет энергии, тратящейся на излучение, осуществляется передача радиосигналов.
Электромагнитные волны, встречая на своем пути проводники, вызывают в них движение электронов. С этого начинается прием сигналов — радиоприем.


предыдущая страница оглавление следующая страница