На главную


ГЛАВА ТРЕТЬЯ

ЭЛЕКТРОН ПЕРЕСТАЕТ БЫТЬ НЕЗНАКОМЦЕМ

Свечение разреженного газа

Красивый яркий пурпурно-розовый свет, льющийся в трубках с разреженным воздухом, привлекал внимание многих исследователей. Ученые и даже просто школьные учителя физики многократно повторяли этот замечательный опыт академика В. В. Петрова. Они стремились понять причину загадочного свечения и дать ему объяснение. Они чувствовали себя, как мореплаватели, увидевшие на горизонте берег земли, не отмеченной на карте.
Для опытов изготовляли тонкостенные, стеклянные, запаянные с обоих концов трубки. Внутри трубки находились два металлических электрода, вводы которых были пропущены сквозь стекло.
Новые достаточно мощные воздушные насосы позволяли получать в трубках разрежение значительно более высокое, чем то, которого достигал в своих опытах Петров.
Присоединив проводники от электродов трубки к полюсам большой батареи, ученые постепенно Откачивали воздух.
Сначала, когда насос только начинал действовать, в трубке ничего особенного заметить не удавалось. Воздух — плохой проводник электричества. Стрелка измерительного прибора — чувствительного гальванометра, отмечавшего даже самый слабый ток, включенного в цепь вместе с трубкой, оставалась недвижной: ток не шел.
Когда насос откачал большую часть воздуха, в трубке возникало красивое свечение в виде лучистой короны. Свет в короне струился и мерцал. Это были искусственно созданные эльмовы огни. Потом разряд принимал форму яркой нити, соединявшей электроды, нить превращалась в толстый шнурок, постепенно расслаивавшийся и, наконец, разряд заполнял всю трубку.
Непрерывно откачивая воздух, насос постепенно доводил давление в трубке до одной сотой нормального, Кистевой разряд к этому моменту сменялся пурпурно-розовым свечением, возникшим в конце трубки, возле анода, а у катода появлялось синеватое или фиолетовое свечение, но оно располагалось не возле самого катода, а чуть поодаль.
Между пурпурным свечением у анода и синеватым у катода неизменно появлялся темный промежуток. Гальванометр показывал, что через трубку в это время проходит значительный ток. Чем меньше оставалось в трубке воздуха, а следовательно, чем разреженнее становился он, тем сильнее отклонялась стрелка прибора. Казалось странным: если воздух не проводит электричества, то как может проводить его почти пустое пространство — вакуум?
При плотности воздуха в одну тысячную долю нормальной, свечение с анодной стороны распространилось почти на всю трубку и стало более ярким и слоистым. Оно напоминало пурпурные волны полярных сияний. Как мы теперь знаем — пурпурно-розовое свечение трубки и есть искусственно созданное полярное сияние.
Темный промежуток между синеватым свечением у катода и ярким у анода постепенно расширялся; световые явления в трубке располагались так, как это показано на рисунке 33. Делая опыты с трубками, физики изменяли состав газов и наблюдали, как при этом в трубке менялась окраска света. Особенно красивыми были световые явления в разреженном азоте. Трубки с азотом ярко сияли, струившийся из них пурпурно-красный свет озарял комнату. Столь же красиво, хотя и менее ярко, светился разреженный кислород.

Водород давал слабое розовато-фиолетовое свечение, а при сильном разрежении его свечение приобретало неприятный фиолетовый оттенок. Наиболее ярко светящиеся газы — аргон и неон — в те годы еще не были открыты. Свечение этих газов нам теперь хорошо знакомо: аргоном и неоном наполняют газосветные трубки, которыми освещают витрины магазинов или используют их для световых реклам и вывесок.

Открытие катодных лучей

В 1859 году давление воздуха в трубках удалось снизить до одной десятитысячной доли нормального атмосферного давления. При таком сильном разрежении в трубках пурпурно-розовое, слоистое анодное свечение меркнет, слабеет и, наконец, гаснет. При еще большей откачке воздуха анодное свечение вовсе исчезает. Фиолетовое же свечение катода заметно тускнеет, а стенки трубки принимают зеленоватый оттенок и сами начинают светиться, темное же пространство распространяется от катода по всей трубке.
Пространство внутри трубки выглядит почти темным, зато на ее стеклянной стенке, как раз напротив катода, появляется яркое изумрудно-зеленое светящееся пятно: стекло в этом месте становится похожим на драгоценный камень.
Это наводит на мысль, что теперь трубку пронизывают какие-то невидимые лучи, которые распространяются от катода и вызывают свечение стекла. Предметы, поставленные на их пути, отбрасывали резкую тень, как изображено на рисунке 34.

Эти лучи-невидимки получили название катодных лучей.
При изготовлении трубок мастеру-стеклодуву не всегда удавалось поместить катод строго напротив анода. Обычно катод был чуть-чуть наклонен или повернут в сторону; случалось также, что и трубка получалась слегка изогнутой. При малых разрежениях газа в трубке это совершенно не влияло на характер свечения. Свечение все равно струилось от катода к аноду и «находило» анод, где бы он ни помещался.
Когда ученые добились очень больших разрежений, нечаянные ошибки стеклодувов помогли обнаружить новые свойства катодных лучей: они шли по прямым линиям, строго перпендикулярно к поверхности катода, как бы «не обращая внимания» на анод; если анод не лежал напротив катода, то лучи миновали анод стороной.
Для опыта был сделан стеклянный сосуд в виде шара. В нем поместили три анода и один катод.
Сначала путь разряда, заметный благодаря свечению газа, разделился на три ветви и они, изгибаясь дугами, шли каждый к своему аноду. Но при очень большом разрежении три ветви лучей слились в один поток и уперлись в стекло напротив катода (рис. 35).

Такое поведение разряда оставалось непонятным, а ученые, продолжая откачивать воздух, доводили разрежение в трубках уже до миллионных долей, стремясь узнать, какие еще неожиданности могут преподнести загадочные лучи-невидимки.
Но ожидания не оправдались. При предельно низком давлении катодные лучи ослабели, зеленое сияние в стекле померкло, а приборы отметили почти полное прекращение тока в цепи трубки.
Один исследователь попробовал нагреть катод в трубке, в которой вследствие слишком большого разрежения погасли катодные лучи. Когда катод раскалился, зеленое поле в стекле напротив катода вспыхнуло с прежней силой, и погасить его- уже не удавалось, хотя воздушный насос продолжал откачивать последние остатки воздуха. Раскаленный катод испускал лучи, несмотря на почти полное отсутствие воздуха. Излучение прекратилось только, когда катод остыл.
Более странных явлений физикам прежде наблюдать, пожалуй, не приходилось. Что представляют собой эти таинственные лучи? В их электрической природе сомневаться было невозможно, приборы показывали, что через трубку течет ток. Но... что такое катодные лучи? Родственны ли они световым? Или, может быть, это струи каких-то новых неизвестных частиц?
Ученые заинтересовались катодными лучами и ставили один опыт за другим. Заказывали трубки самой различной, подчас фантастической формы.
Было замечено, что стекло в том месте, где сияло зеленое пятно, сильно нагревается. Это доказывало, что катодные лучи несут значительную энергию.
В одной из трубок ученые применили катод, изготовленный в виде вогнутого зеркала. Катодные лучи, испускаемые катодом такой формы, сходились в фокусе, как сходятся коническим пучком солнечные лучи, прошедшие сквозь выпуклое стекло (лупу). В фокусе солнечных лучей, собранных большой лупой, можно плавить свинец, воспламенять бумагу. В фокусе вогнутого катода плавились и кипели такие тугоплавкие металлы, как платина или иридий.
Одно время ученым казалось, что катодные лучи — не что иное, как мельчайшие частички металла, отрывающиеся от катода и летящие с огромной скоростью. Действительно, после долгого пользования катодной трубкой на ее стенках оседал металлический налет. Но он появлялся не только там, где сияло зеленоватое свечение, а распространялся по всей трубке и отлагался гуще вблизи катода. Металлические частицы катода летели не струей по одному направлению, а веером, во все стороны. Большое значение при этом имел материал, из которого был сделан катод. Катодные лучи одинаково хорошо вылетали из серебряного и из медного катодов, но распыление шло по-разному — серебро распылялось быстрей, чем медь.
Было доказано, что катодные лучи к металлическим частицам, вылетающим из катода, отношения не имеют. Лучи двигаются сами по себе, а частицы — сами по себе.
Катодные лучи оставались загадкой.
Именно в этот период, характеризуя состояние учения об электричестве, Фридрих Энгельс писал:
«В учении же об электричестве мы имеем перед собою хаотическую груду старых, ненадежных экспериментов, не получивших ни окончательного подтверждения, ни окончательного опровержения, какое-то неуверенное топтание во мраке, не связанные друг с другом исследования и опыты многих отдельных ученых, атакующих неизвестную область вразброд, подобно орде кочевых наездников. И в самом деле, в области электричества еще только предстоит сделать открытие, подобное открытию Дальтона открытие, дающее всей науке средоточие, а исследованию — прочную основу. Вот это-то состояние разброда в современном учении об электричестве, делающее пока невозможным установление какой-нибудь всеобъемлющей теории, главным образом и обусловливает то, что в этой области господствует односторонняя эмпирия. ..»(Ф. Энгельс, Диалектика природы, Госполитиздат, 1950, стр. 83—84)
Дальтон ввел в науку понятие об атомных весах.

Загадочное лучистое вещество

Новые мысли зародились в результате опытов с катодной трубкой и магнитом.
Когда к трубке поднесли магнит, катодный луч изогнулся наперерез силовым линиям магнитного поля (рис. 36).

Лучи, как видимые — световые, так и невидимые — инфракрасные и ультрафиолетовые, не отклоняются магнитом.
Светоносная же струйка в катодной трубке повинуется влиянию магнита, значит, она не световой луч, а именно струйка! Но чего? Частиц какого-то вещества?
Это вещество не может быть металлом катода. Когда катод распыляется, его частицы летят не так, как движется неизвестная материя катодного луча. И это не частицы воздуха, так как катодный луч проходит в трубке, даже при самой высокой степени разрежения воздуха.
Исследователи попробовали повернуть магнит, расположенный возле катодной трубки. Его укрепили так, чтобы северный полюс оказался на месте южного, а южный — на месте северного. От перестановки магнита катодный луч изогнулся в противоположную сторону. Если в начале опыта он отклонялся вниз, то теперь он выгнулся вверх. Словом, поведение катодного луча напоминало движение провода с током в магнитном поле (см. выше рис. 25).

Эти странные явления допускали только одно, естественное объяснение: катодный луч не что иное, как поток отрицательных зарядов — мельчайших частичек отрицательного электричества, то есть электрический ток.
Уже явление электролиза наводило на мысль о существовании элементарных зарядов. Но там эти заряды были связаны с обломками молекул — с ионами, которые служили им «лодочками». Здесь же они выступали самостоятельно, так сказать, в чистом виде и летели в безвоздушном пространстве катодной трубки «вольными птицами».
Но можно ли сказать, что заряды, путешествующие на ионах, и заряды, образующие катодный луч,— это одни и те же заряды? Равны ли они между собой по величине? Нет ли между ними какой-либо разницы?
На эти вопросы ученые смогли дать ответ только после ряда новых опытов.


предыдущая страница оглавление следующая страница