На главную


Химическое действие тока

Фарадей начал исследовать электролиз, повторяя опыты своих предшественников. Он разлагал электрическим током слегка подкисленную воду. Частицы воды при этом распадались на водород и кислород. Кислород собирался на аноде, водород — на катоде.
Чтобы эти газы во время опыта не улетучивались, ученый надел на катод и на анод опрокинутые пробирки, заполненные водой. Пузырьки газов, отрываясь от электродов, подымались вверх и, вытесняя воду, скапливались под донышками пробирок. Это несложное приспособление позволяло измерять, сколько газов выделяется при электролизе (рис. 30).

После первых опытов у Фарадея зародилось предположение, что количество выделившихся газов зависит только от того, сколько тока было пропущено через электролит. Но прежде чем проверять свою догадку, Фарадей решил узнать, какое значение имеют размеры электродов. Он взял четыре одинаковые стеклянные банки и заполнил их слабым раствором серной кислоты. В первую банку Фарадей опустил самые большие пластинки, во вторую — поменьше, в третью — еще меньше, а в четвертую — тонкие короткие проволочки.
Все четыре банки Фарадей соединил проводами последовательно. Ток из первой банки переходил во вторую, из второй в третью, а из третьей — в четвертую. При таком соединении через каждую из банок проходит совершенно одинаковое количество электричества.
Фарадей присоединил провода к батарее и Стал наблюдать. В пробирках побежали пузьтрьки газов.
Прошло десять минут,— водорода во всех банках выделилось поровну (то же можно было сказать и о количестве кислорода); ученый подождал еще 5 минут,— равенство не нарушилось, и на 25-й минуте опыта количество водорода во всех банках продолжало увеличиваться совершенно равномерно. Размеры электродов влияния на количество разложившегося вещества не оказывали.
За первым опытом последовали другие. Фарадей менял силу тока, концентрацию раствора кислоты, расстояние между электродами, но количество водорода всегда неизменно оставалось пропорциональным количеству электричества, пропущенного через электролит.
В последнем опыте Фарадей применил электроды одинакового размера и формы, но изготовленные из разных материалов. Катоды были платиновые, а аноды — один цинковый, другой — серебряный, третий — платиновый.
Банки, как и в первом опыте, были соединены последовательно. В результате оказалось, что водорода выделилось во всех банках поровну, а именно: 1 грамм (11,2 литра) на каждые 96500 кулонов электричества. Подсчет дан в современных мерах.
Закон, найденный в опытах с водой, Фарадей стал проверять на других веществах. Он разлагал током соединение хлора с медыо. Пропустив 96500 кулонов, получил на аноде 35,5 грамма (тоже 11,2 литра!) хлора, а на катоде 32 грамма меди.
При разложении раствора медного купороса 96500 кулонов электричества тоже выделяли 32 грамма меди.
Эти числа остаются неизменными. Любое химическое соединение, содержащее хлор, выделяет 35,5 грамма хлора на 96500 кулонов электричества. Любое вещество, содержащее медь, выделяет 32 грамма меди притом же количестве электричества.
Числа, полученные Фарадеем, свидетельствовали о неразрывно прочной связи между количеством пропущенного через электролит электричества и количеством выделившегося вещества. Это был незыблемый закон.
Фарадей записал свои выводы примерно так:
1. Количество выделяющихся на электродах веществ прямо пропорционально количеству электричества, пропущенного через электролит.
2. Вес порции каждого вещества, выделяющегося при электролизе на каждые 96500 кулонов, неизменен и зависит только от химических свойств этих веществ, то есть водорода — выделяется 1 грамм, кислорода — 8 граммов, меди — 32 грамма, серебра — 108 граммов и так далее.

Переправа электрических путешественников

Как объяснить упрямое постоянство, проявляемое химическими элементами при электролизе? В чем кроется причина такого постоянства? Что переносит вещества с такой строгой точностью: ни пылинки меньше и ни пылинки больше?
На эти вопросы Фарадей ответа дать не мог.
Но в чем же все-таки дело? Почему 96500 кулонов электричества всегда выделяют ровно 108 граммов серебра и ни одной крупиночки больше?
Представим себе мысленно реку. На ее берегах две пристани. К пристаням подходят шоссейные дороги. По шоссе спешат на пристань путешественники. Они подбегают к пристани, торопятся попасть на другой берег, но, увы,— нет ни парома, ни парохода. Имеются только одноместные рыбачьи челноки.
Броситься вплавь? Но плавать наши путешественники не умеют. Переправиться можно лишь на одноместных челноках.
Каждый путешественник садится в челнок, переправляется на другой берег и спешит дальше; брошенный им челнок остается возле пристани.
Сколько путников переправилось, столько же осталось на берегу челноков.
Но, разумеется, все это будет обстоять так при условии, что вес и рост всех путешественников и размеры всех челноков одинаковы. Окажись среди путников малыши, которые могли бы втиснуться вдвоем в один челнок, или среди челноков — большие лодки, способные вместить несколько путников одновременно, строгое соответствие между числом переправившихся путников и числом брошенных челноков неминуемо нарушилось бы.
Теперь представим себе, что путешественники — это электрические заряды, шоссе — провода, пристани — катод и анод, река — электролит, а челноки — частицы вещества.
«Челнок с пассажиром»—это заряженная частица вещества, которая движется к катоду или аноду в зависимости от знака заряда. Сколько переправилось мельчайших зарядов, столько же выделилось частиц вещества. Отсюда — строгое соответствие количества вещества и электричества при электролизе.

Электролиз показывал, что существуют наименьшие электрические зарядики и что эти зарядики все одинаковы.

Подобное рассуждение невольно наводит на мысль,— нельзя ли определить вместимость «лодочки» и узнать, таким образом, величину электрического зарядика?
О постановке такого опыта во времена Фарадея не приходилось думать — тогда даже изолированная проволока считалась редкостью, а постройка сложных, точных приборов и подавно была невозможна. Самое же главное — идея о прерывистом, зернистом строении электричества только начинала пробивать себе дорогу в науке.
То, что каждое вещество состоит из одинаковых мельчайших частичек, называемых атомами, установил гениальный Ломоносов. Химики, жившие после Ломоносова, на многих примерах убедились, что все вещества действительно состоят из атомов.
Во времена Фарадея атомистическая теория имела много приверженцев, но Фарадей к их числу не принадлежал.
Из его наблюдений следовало, что электричество, как и вещество, состоит из мельчайших частичек — наименьших ззрядиков или порций. Однако сделать этот вывод Фарадей не смог.
В своих исследованиях индукции и самоиндукции Фарадей поступал как ученый-материалист. Он руководствовался передовой теорией, а она заставляет каждого исследователя искать связь между явлениями, устанавливать зависимости, вскрывать причины, находить следствие. Передовая теория привела Фарадея к важным открытиям.
А для истолкования опытов с электролизом Фарадей пренебрег передовой атомистической теорией. И это сразу же обезоружило его. Он был вынужден остановиться на полдороге. Фарадей не смог сделать выводов из своих наблюдений и указать, что электролиз не только обнаруживает прерывистое «атомное» строение электричества, но и подтверждает мысль о прерывистом атомном строении вещества.
Только на склоне лет Фарадей признал атомистическую теорию, и у него зародилось смутное представление о связи между атомами и электрическими явлениями.
В одном из своих последних сочинений Фарадей писал: «Громадное количество фактов убеждает нас в том, что между атомами веществ и электрическими силами существует какая-то связь, и что именно этим силам атомы обязаны самыми поразительными свойствами и, между прочим, взаимным химическим сродством».
Эту связь установили другие ученые значительно позже, много лет спустя после смерти Фарадея.

Разница электрических уровней

Одновременно с Фарадеем жил и работал немецкий физик Георг Ом. Ом старался понять явление электрического тока, сравнивал его с другими, хорошо известными всем, явлениями природы.
«Почему река течет в море?» — спрашивал себя этот ученый. Потому, что уровень воды в ее верховьях выше, чем уровень воды в море. Разница уровней создает напор, и вода течет. А почему течет ток по проводам? Очевидно, и здесь существует разница уровней, создающая напор, заставляй цая электричество течь от высокого уровня к более низкому. Если это так, то гальваническую батарею можно уподобить насосу, который перекачивает воду из одного сосуда в другой и создает разность уровней. Нижние части сосудов соединены трубкой, по которой вода течет из сосуда с более высоким уровнем в сосуд с более низким уровнем, а насос, своей работой постоянно поддерживая разность уровней, заставляет воду непрерывно течь по трубке (рис. 32).

Трубка, соединяющая сосуды с водой, может быть различной и по форме, и по материалу, и по устройству. Очевидно, что по тонкой трубке воде труднее течь, чем по толстой, по короткой — лучше, чем по длинной; ПО трубке с гладкими стенками — свободней, по трубке, забитой песком или шероховатой — с трудом.
Тонкий провод окажет электрическому току большее сопротивление, чем толстый, а короткий — меньшее, чем длинный. Серебряный или медный провода подобны чистым хорошим трубкам; железная или никелиновая проволоки — это как бы трубки, забитые песком и шероховатые. По такому проводу току придется «пробираться» с большим усилием.
Какая же величина соответствует высоте уровня при протекании электрического тока? Поверхностям одинаковых уровней воды в сосудах соответствуют точки одинакового потенциала в цепи. Разность потенциалов — это разность электрических уровней. Она и вызывает движение электрических зарядов.
«Отчего же зависит сила тока?» — спрашивал себя Ом. Во-первых, от разности потенциалов: чем больше «напор», тем сильнее будет ток. Во-вторых, от сопротивления проводника: чем больше будет сопротивление проводника, тем слабее потечет ток.
Ученый проверил свои соображения на опыте и установил, что сила тока в проводнике равна разности потенциалов на концах проводника, деленной на сопротивление проводника (разумеется, все величины должны быть взяты в определенных мерах). Это и есть закон Ома. Его обычно выражают в виде формулы

где i — сила тока, u — разность потенциалов (напряжение) , r — сопротивление проводника.
Закон Ома — один из основных законов электротехники. Зная две величины, из входящих в формулу закона, всегда можно найти третью. Если известны сила тока и разность потенциалов — найдем сопротивление проводника:

Зная силу тока и сопротивление проводника, найдем напряжение:

Ученые встретили закон Ома с большим недоверием. Электрические явления казались им невероятно сложными, разнообразными, не поддающимися расчету. И вдруг выясняется, что все необычайно просто: i равно u, деленному на r. Простота отпугивала ученых. Они сомневались, возражали, отрицали выводы Ома.
Около двадцати лет продолжалась борьба, однако, опровергнуть закон Ома никто не смог. Исследования русского ученого Э. X. Ленца подтвердили правильность этой зависимости, и примерно с 1847 года закон Ома получил всеобщее признание.

Электротехнические меры

В 1881 году в Париже собрался первый международный конгресс электриков. В годы, предшествовавшие конгрессу, в электротехнике создалось нетерпимое положение, напоминавшее библейскую историю Вавилонской башни, которую строители якобы не могли закончить потому, что начали говорить на разных языках. Электрики с трудом понимали друг друга,— ведь в разных государствах и даже в пределах одного государства применялись самые различные единицы для измерений электрического тока, В 1880 году насчитывалось 15 различных единиц сопротивления, 12 единиц напряжения, 10 единиц силы тока. И каждый применял те единицы, какие ему казались удобнее.
На этом конгрессе, при деятельном участии знаменитого русского физика А. Г. Столетова, разнобой в единицах устранили и установили международные меры для электричества.
По решению конгресса электрическим единицам присвоили имена выдающихся физиков, изучавших электричество.
Тогда единица количества электричества и была названа кулоном. Кулон равен тому количеству электричества, которое выделяет из раствора серебряной соли 1,118 миллиграмма серебра.
Единица силы тока получила название ампер. Ток силой в 1 ампер, протекая через водный раствор азотнокислого серебра, выделяет на катоде 1,118 миллиграмма серебра в течение одной секунды. Иначе говоря, если через какой-нибудь проводник в каждую секунду проходит 1 кулон электричества, такой ток имеет силу в 1 ампер. Обозначается ампер буквой а или A.
Единица сопротивления проводников, по предложению А. Г. Столетова, была названа омом.
Ом равен сопротивлению, которым обладает ртутный столбик постоянного сечения высотой в 106,3 сантиметра и весом в 14,4521 грамма. Обозначается ом просто — ом или греческой буквой омега — Ω.
Единица, служащая для измерения разности потенциалов или напряжения, получила название вольт.
Вольт равен напряжению, которое создает силу тока в 1 ампер в проводнике, имеющем сопротивление в 1 ом. Обозначается буквой в или V.
Единица электрической емкости называется фарадой. Фарада равна емкости проводника, который способен вместить 1 кулон электричества при напряжении в 1 вольт. Фарада — слишком большая мера. Емкость всем земного шара не составляет 1 фарады, а потому в практике для измерения электрических емкостей применяются более мелкие меры — миллионные доли фарады — микрофарады. Обозначается микрофарада так: мкф или μF.


предыдущая страница оглавление следующая страница